

Martin Schoenitz (Autor)

Kontinuierliche Kristallisation von Lipidnanopartikeln in mikrostrukturierten Apparaten

https://cuvillier.de/de/shop/publications/7432

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhaltsverzeichnis

Kurzfassung						
A	bstrac	et		V		
S	ymbol	- unc	d Abkürzungsverzeichnis	VI		
1	Mo	Motivation und Ziele der Arbeit				
2	Pro	ozess	sentwicklung mit Hilfe der Mikroverfahrenstechnik	4		
	2.1	Gru	ındlagen der traditionelle Prozessentwicklung	6		
	2.2	Der	Mikro-Konti-Ansatz	7		
	2.3	Sca	le-Up	8		
3	Ko		uierliche Kristallisation			
	3.1		dellsystem: Lipidnanopartikel			
	3.1		Herstellung von Lipinanopartikeln			
	3.1		Feinemulgierung mittels Hochdruck-Homogenisation			
	3.1		Emulgierung mittels Ultraschall			
	3.2	Kor	ntinuierliche Kristallisation in einem Mikrowärmeübertrager			
	3.2	1	Kontinuierliche Kristallisation in Mikrokristallisatoren	17		
	3.2	2.2	Aufbau der Versuchsanlage	21		
	3.2	2.3	Prozessfenster der Versuchsanlage	23		
	3.2	2.4	Empirische Modellierung der Prozessfenster	29		
	3.2	2.5	Kontinuierliche Kristallisation von Lipidnanopartikeln	30		
	3	3.2.5.	1 Kontinuierliche Kristallisation für Screening-Anwendungen	32		
	3	3.2.5.	2 Kontinuierliche Kristallisation für Produktions-Anwendungen	34		
	3.3	Kor	ntinuierliche Polymorphie-Einstellung von Lipidnanopartikeln	36		
	3.3	.1	Einfluss von Temperatur und Verweilzeit auf die Polymorphie	37		
	3.3	.2	Bestimmung der Anteile der Kristallmodifikationen	38		
	3.3	3.3	Vierstufige Screening-Methode zur polymorphen Kristallumlagerung	40		
	3	3.3.3.	1 Schritt I: Charakterisierung des Schmelzverhaltens	41		

	3.3.3.2	Schritt II: Thermisch eingeleitete Kristall-Umlagerung	42
	3.3.3.3	Schritt III: Kinetikbestimmung der Kristall-Umlagerung	45
3.3.3.4		Schritt IV: Entscheidung bezüglich der Prozessierbarkeit	48
	3.3.3.5	Anwendung für Formulierungs- und Prozessentwicklung	48
4	Fouling un	d Verblockungserscheinungen	52
	4.1 Fouling	Ţ	52
	4.1.1 For	uling in Wärmeübertragern	53
	4.1.2 For	uling in Mikrokanälen	55
	4.2 Fouling	während der kontinuierlichen Kristallisation von Lipidnanopart	ikeln 57
	4.2.1 Wi	ederholbarkeit der Foulinguntersuchungen	66
	4.2.2 For	ulingminderung	71
	4.2.2.1	Foulingminderung durch Anpassung der Formulierung	71
	4.2.2.2	Foulingminderung durch Variation der Prozessparameter	76
	4.3 Aufkläi	rung von negativen Foulingwiderständen	81
	4.3.1 Mo	odellierung der verblockten Querschnittsfläche	87
	4.3.2 Ab	hängigkeit der Leistungscharakteristik von Re	91
	$4.3.3 R_f$	in Abhängigkeit der verblockten Querschnittsfläche	95
	4.3.3.1	Standardisierte Berechnung von R_f	97
	4.3.3.2	Berechnung von R_f : Dynamische Betrachtung von k_0	97
	4.3.3.3	Berechnung von R_f : Dynamische Betrachtung von k_0 und k_f	99
	4.3.3.4	Dynamische Betrachtung von k_f	100
	4.4 Verglei	ch von Fouling in mikro- und makrostrukturierten Apparaten	101
5	Reinigung	des Mikrowärmeübertragers	103
	5.1 Fouling	g-Visualisierung	104
	5.1.1 Ex	perimenteller Aufbau der Versuchsanlage	104
		d-Weiterverarbeitung	
		line-Monitoring des Verschmutzungsgrades	
	5.1.3.1	Zunahme des Belegungsgrades	
	5.1.3.2	Konstanter Belegungsgrad	110

5.1.3.3	Abnahme des Belegungsgrades	111
5.1.4 A	bfang-Effekt in mikrostrukturierten Apparaten	111
5.2 Design	n von Reinigungsstrategien für den Mikrowärmeübertrager	112
5.2.1 V	ersuchsaufbau zur Auslegung von Reinigungs-Strategien	113
5.2.1.1	Erzeugung von definierten Foulingschichten	114
5.2.1.2	Aufbau und Betrieb des Strömungskanals	115
5.2.1.3	Aufbau und Betrieb der Fluid-Dynamic-Gauging-Anlage	116
5.2.2 Ü	bertragung von Reinigungsparametern auf den Mikrowärmeübertrager	119
5.2.2.1	Ermittlung von Reinigungsparametern mittels FDG	119
5.2.2.2	Übertragung von FDG-Reinigungsparametern	121
5.2.2.3	Ermittlung von Reinigungsparametern mit dem Strömungskanal	124
5.2.3 Re	einigung mittels Inline-Ultraschall	127
5.2.3.1	Integration einer Ultraschallsonotrode in den Mikrowärmeübertrager	128
5.2.3.2	Einfluss von Ultraschall auf die Prozessparameter	129
5.2.3.3	Inline-Reinigung mittels Ultraschall	134
5.3 Vergle	eich der Reinigung von Mikro- und Makroapparaten	137
6 Zusamme	nfassung und Ausblick	138
6.1 Zusam	menfassung	138
6.2 Ausbli	ck	141
Literatur		143