Michel Philipp (Autor) # Contributions to Machine Learning and Psychometrics Computational, Graphical, and Statistical Methods for Assessing Stability https://cuvillier.de/de/shop/publications/7439 #### Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de ## Chapter 1 ## A toolkit for stability assessment of tree-based learners Michel Philipp, University of Zurich Achim Zeileis, Universität Innsbruck Carolin Strobl, University of Zurich Abstract Recursive partitioning techniques are established and frequently applied for exploring unknown structures in complex and possibly high-dimensional data sets. The methods can be used to detect interactions and nonlinear structures in a data-driven way by recursively splitting the predictor space to form homogeneous groups of observations. However, while the resulting trees are easy to interpret, they are also known to be potentially unstable. Altering the data slightly can change either the variables and/or the cutpoints selected for splitting. Moreover, the methods do not provide measures of confidence for the selected splits and therefore users cannot assess the uncertainty of a given fitted tree. We present a toolkit of descriptive measures and graphical illustrations based on resampling that can be used to assess the stability of the variable and cutpoint selection in recursive partitioning. The summary measures and graphics available in the toolkit are illustrated using a real world data set and implemented in the R package stablelearner. Keywords: stability, recursive partitioning, variable selection, cutpoint selection, decision trees #### 1.1 Introduction Recursive partitioning approaches, such as classification and regression trees (CART; Breiman et al., 1984), conditional inference trees (Hothorn et al., 2006), or model-based recursive partitioning (Zeileis et al., 2008), are widely used for modeling complex and possibly high-dimensional data sets (Strobl et al., 2009). The methods are able to detect high-degree interactions and nonlinear structures in a data-driven way. Therefore, these methods have been frequently applied in many scientific disciplines, as well as in many industries for predictive modeling purposes (Kuhn & Johnson, 2013). Nowadays, more complex and more flexible methods exist for predictive learning that often achieve a better prediction accuracy (e.g., random forests, boosting, support vector machines, neural networks). Recursive partitioning, however, is still a popular method in situations where the aim is to infer and interpret the structure of the underlying process that has generated the data. For this purpose, recursive partitioning is often favored over other methods, since the results can be illustrated in the form of decision trees, which are relatively easy to interpret. Therefore tree-based methods are widely used as exploratory modeling techniques in many fields, such as social and behavioral sciences (see, e.g., Kopf, 2013). Recursive partitioning algorithms recursively split the predictor space $\mathcal{X} \in \mathbb{R}_p$ to form homogenous groups of observations. The various algorithms that have been proposed in the literature mainly differ with respect to the criteria for selecting the split variable, choosing the cutpoint and stopping the recursion (see Hothorn et al., 2006). CART, for example, selects the variable and the cutpoint that best unmixes the classes in case of a classification problem, or that most reduces the squared error loss in case of a regression problem. Conditional inference trees, on the other hand, perform splitting and stopping based on a statistical inference procedure. Despite their popularity, a major drawback of recursive partitioning methods is their instability. By studying the predictive loss of different regularization techniques, Breiman (Breiman, 1996b) identified recursive partitioning (among others) as unstable. It is well known that small changes in the training data can affect the selection of the split variable and the choice of the cutpoint at any stage in the recursive procedure, such that the resulting tree can take a very different form (Kuhn & Johnson, 2013; Strobl et al., 2009; Turney, 1995). Moreover, recursive partitioning methods do not provide measures of confidence for the results. Therefore, users cannot assess the degree of certainty for selected variables and cutpoints. Hence, the question remains to what extend one can rely on the splits in a single tree to draw conclusions. Previous research has already focused on assessing the stability of trees from different perspectives and with different goals (see, e.g., Bar-hen, Gey, & Poggi, 2015; Briand et al., 2009; Miglio & Soffritti, 2004). Their methods are commonly based on a measure that is used to compare the distance (or similarity) between pairs of trees. In (Briand et al., 2009), for example, a measure of similarity between trees was proposed to stabilize the selection of the splits in a specific tree algorithm. And more recently, measures and theory were proposed to detect observations that influence the prediction or the pruning in CART (Bar-hen et al., 2015). While in these approaches the prediction, partitioning, and the structure of the trees are considered separately, they may also be combined in one measure (Miglio & Soffritti, 2004). Thus, while previous research has focused on reducing instability, measuring the influence of individual observations, or assessing the distance between trees, we focus on assessing and visualizing two important aspects that reveal the stability of a tree resulting for a given data set: the variable and the cutpoint selection. In this paper, we first discuss instability of results from recursive partitioning using a practical example. In the second part, we present a computational procedure and a number of graphical tools that support users for assessing the stability of the variable and the cutpoint selection. The proposed methods are implemented in the software package **stablelearner** (currently available from https://R-Forge.R-project.org/projects/stablelearner/) for the free R system for statistical computing (R Core Team, 2016). By using a real world data set, the package will be used throughout the article for illustrating the proposed methods. ## 1.2 Instability of trees To illustrate the instability of trees we have used recursive partitioning to predict the survival of the passengers during the sinking of the RMS Titanic in 1912 by several passenger characteristics. A complete passenger list is available online on http:// www.encyclopedia-titanica.org/ (accessed on 2016-04-05). According to the list, 1317 passengers (excluding crew members) were aboard from which 500 survived the sinking. The passenger information that was used for training the tree was gender, age, fare, class (1st, 2nd, or 3rd), place of embarkment (B = Belfast, C = Cherbourg, Q = Queenstown, S = Southampton), number of siblings/spouses aboard (abbreviated as sibsp), and number of parents/children aboard (abbreviated as parch). The last two features were obtained from an overlapping data set available on http://biostat.mc .vanderbilt.edu/wiki/Main/DataSets. The tree was generated using the function ctree from the partykit package (Hothorn et al., 2006; Hothorn & Zeileis, 2015) that performs recursive partitioning in a conditional inference framework in R and is illustrated in the form of a tree in the upper panel of Figure 1.1. In the following, we will refer to this result as the original tree, since the partitioning was performed on the original passenger data (as opposed to random samples drawn from the original data set employed subsequently). #### (b) Tree based on a bootstrap sample drawn from the original data set: Figure 1.1: Tree representation of results from recursive partitioning for the RMS Titanic passenger data. Based on a bootstrap sample taken from the original passenger data, we generated a second tree, which is illustrated in the lower panel of Figure 1.1. The structures of the trees look quite different at first sight, which suggests a large instability of the tree. However, when looking closer one can identify variables that were selected in both trees and split at the same or a similar cutpoint. For example, the numerical variable age was split at 4 and 54 in the original tree and at the values 4 and 36 in the bootstrap tree, or the numerical variable fare was split twice in the original tree at 15.02 and 23.05 and at 23.05 in the bootstrap tree. Thus, many splits appeared in both trees, only the order and the cutpoints for numerical variables were slightly different. As Turney (1995) elaborated in his work, two trees that are structurally different can be logically equivalent. This means that two trees can lead to very similar or even the same interpretation although their structures (in particular the order of the splits) look very different. To illustrate this principle, we consider two hypothetic trees for a simple classification problem with two classes and a two-dimensional predictor space. Note, however, that the statement also holds for any type of response variable and also for predictor spaces with more dimensions. Figure 2.1 shows two trees (upper row) and representations of the corresponding partitioning of the feature space (bottom row). In the illustration the predicted class in each terminal node is indicated by the colors red and green. According to the figures in panel (a) and (b), the tree structures differ by the split variable in their root node, their path structure, and the sequence of split variables in the paths between the root node and the leafs. Yet, though the two trees are structurally different, the predictions are equivalent for any point in the predictor space. By mentally merging the two partitioning representations, it becomes evident that the two trees have identical splits that only appear in a different order in the tree representation. To assess whether a tree is stable or not, it is therefore principally important to investigate the stability of the splits, rather than the stability of the entire tree structure. From a single tree representation it is not possible to identify which splits are stable. It is possible, however from an ensemble of trees, e.g., generated by resampling from the original data. From the ensemble, the stability of the splits can be assessed by investigating the variable selection frequency and the cutpoint variability. # 1.3 Measuring variable selection and cutpoint stability In the following we will outline what steps are necessary from a conceptual point of view to assess the stability of variable and cutpoint selection in trees. Subsequently, these steps will be illustrated for a binary classification tree modeling survival vs. non-survival on the RMS Titanic. Figure 1.2: Examples of different tree structures, but equivalent partitions and interpretations. The first step to assess stability is to draw several samples from the original data. The second step is to compute the descriptive measures and graphics provided in our toolkit over all samples. The options implemented in the package for generating samples in the first step are bootstrap sampling (sampling with replacement), subsampling (sampling without replacement), k-fold sample splitting (partitioning the original data into k equally sized samples), leave-k-out jackknife sampling, or further user-defined strategies. Since each option has its specific peculiarities, they will likely generate different results. For the further illustration we will focus on bootstrap sampling, which is most widely used and was chosen as the default option in the function stabletree() that performs the resampling and extracts the required information from the ensemble for further analysis: The function stabletree() requires a tree-based model object that either inherits from class party (like, e.g., the result of ctree() or glmtree()) or can be coerced to it (like, e.g., the results of rpart() or J48()). Additionally, parallelization can easily be utilized with a convenience option for multicore computation based on parallel (for platforms that support this). In the remaining part of this section, descriptive measures and graphical illustrations are introduced for investigating the stability of the splits, specifically for the variable and the cutpoint selection. First, the measures will be briefly discussed and then illustrated for the Titanic example. #### 1.3.1 Variable selection analysis The aim of the variable selection analysis is to investigate whether variables that are selected for splitting in the original tree are also consistently selected for splitting in the resampled data sets. Furthermore, it can be compared how often (on average) a variable is selected within the original tree and the repetitions, respectively. The first descriptive measure is simply the relative frequency of selecting variable x_i for splitting, computed over all repetitions in the procedure. Let $b = 1, \ldots, B$ denote the index for the repetitions and $j = 1, \ldots, p$ the index of the variables considered for partitioning. Further, let $S = \{s_{bj}\}$ be a binary matrix, where $s_{bj} = 1$ if variable x_j was selected for splitting in repetition b and 0 otherwise. Then, the relative variableselection frequency is computed by $100 \cdot \frac{1}{B} \sum_{b=1}^{B} s_{bj}$ and is expected to be large (i.e., close to 100%) for those variables selected in the original tree, if the result is stable. The variable selection frequency can be illustrated graphically using a barplot() method that generates the barplot depicted in the left panel of Figure 1.3. The variables depicted on the x-axis are sorted in decreasing order with respect to their variable selection frequencies (here and in all the following graphical tools). The bars of variables selected in the original tree are colored in dark gray and the corresponding labels are underlined. Thus, from the plot we can infer that the variables gender, class, age, fare, and sibsp were selected for splitting in the original tree. The height of the bars corresponds to the variable selection frequency depicted on the y-axis. The first two bars reach the upper limit of 100%, which means that the variables gender and class were selected for splitting in each repetition. The variable age, represented by the third bar, was selected slightly less than 100% (but still very often) over the repetitions. The variables fare and sibsp, represented by the fourth and the fifth bar, were selected in the original tree, but not as frequently over all repetitions. This indicates that the splits in those variables in the original tree must be considered less reliable compared to the splits of the variable gender, class, and age. The last two bars represent the variables embarked and parch, which were not selected in the original tree. They were selected for splitting in less than 50% of the repetitions. This indicates that although those Figure 1.3: Graphical variable selection analysis. variables seem to carry some information that is useful for predicting survival, they are not predominant. From a content perspective one may assume for this example that, over the repetitions, the variables embarked and parch occasionally acted as a proxy for the other variables in the data set. The summary() method prints the corresponding table with the variable selection frequency (termed freq) in the first column for each variable. The second column (headed by an asterisk) indicates whether the variable was selected for splitting in the original tree: | | freq | * | mean | * | |---------------------------|-------|---|-------|---| | gender | 1.000 | 1 | 1.644 | 2 | | <pre>ordered(class)</pre> | 1.000 | 1 | 2.578 | 3 | | age | 0.988 | 1 | 2.316 | 2 | | fare | 0.922 | 1 | 1.676 | 2 | | sibsp | 0.810 | 1 | 1.132 | 1 | | embarked | 0.510 | 0 | 0.638 | 0 | | parch | 0.348 | 0 | 0.444 | 0 | | (* = original tree) | | | | | The third column in the table (termed mean) contains the values of another descriptive measure and denotes the average count splitting in variable x_j per tree. Let $\mathbf{C} = \{c_{bj}\}$ be an integer matrix, where c_{bj} equals the number of times x_j was used for splitting in the tree for repetition b. Note that this number can be greater than one, because the same variable may be used for splitting in different parts of the tree. The average variable split count is computed by $\frac{1}{B} \sum_{b=1}^{B} c_{bj}$ and is expected to be close to the count of splitting in variable x_j in the original tree. The last column in the table (also headed by an asterisk) indicates how many times the variable was selected for splitting in the original tree. For example, the variable **gender**, was used on average 1.644 times over all repetitions and twice in the original tree. It is possible that the variable **gender** was often split on a higher level (and thus less often used for splitting) in the repetitions, as compared to the original tree. The reverse may be assumed for the variable **age**, which was on average more often used for splitting over the repetitions than it was used for splitting in the original tree. Similar interpretations follow from the information for the other variables. Furthermore, we can investigate the combinations of variables selected in the various trees over the repetitions. This can be illustrated using the function image(). The resulting plot that is illustrated in the right panel of Figure 1.3 is a graphical illustration of the binary matrix **S** that contains the variable selections over the repetitions. A fine grid of rectangles is drawn for each element in **S**, which are colored dark gray if $s_{bj} = 1$ and light gray if $s_{bj} = 0$. The repetitions (illustrated in the y direction) are ordered such that similar combinations of selected variables are grouped together. The combination of variables used for splitting in the original tree is marked on the right side of the plot using a thin solid red line. The area representing the combination is additionally enclosed by two dashed red lines. Notice that this is also the most frequent combination of variables selected over all repetitions. Repetitions that included additional variables beyond the combination in the original tree are illustrated below the marked area. Hence, we can deduce from the illustration that the variables embarked and parch were sometimes additionally used for splitting. In the replications above the marked area some splitting variables from the original tree were substituted with other variables. ### 1.3.2 Cutpoint analysis The variable selection analysis showed that there are some variables which are consistently used for splitting, indicating that those variables are more relevant in predicting survival than others. However, even when the same variables are selected, the splits may still vary with respect to the cutpoints chosen for splitting. Therefore a further important step in assessing the stability of the splits is the analysis of the cutpoints, which provides more detailed information about the variability of the splits. We suggest different graphical illustrations for analyzing the variability of the cutpoints for numerical, unordered categorical and ordered categorical variables. Using the function plot() these illustrations can be generated for all variables specified in the model. According to the type of variable the correct illustration is chosen automatically and the variable names are underlined if the variable was selected for splitting in the original tree. Figure 1.4 illustrates these plots for the variables in the Titanic passenger data set. Figure 1.4: Graphical cutpoint analysis. To analyze the cutpoints for ordered categorical variables, we suggest to use a barplot that shows the frequency of all possible cutpoints. Those are sorted on the x-axis by their natural order that arises from the ordering of the categories of the variables. Examples are given for the variables class, sibsp, and parch in Figure 1.4. Additionally, the cutpoints chosen in the original tree are marked using a vertical dashed red line. The number above each line indicates at which level the split occurred in the original tree. For example, the cutpoint between the first and the second class is selected more than 500 times (the number of repetitions in this example). This means that for some repetitions the split appeared several times in different positions in the same tree (for example in parallel branches). However, the passengers were split even