

René Goertz (Autor)

Zur Konvergenz diskreter Least-Squares Methoden auf äquidistanten Stützstellen

https://cuvillier.de/de/shop/publications/7750

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhaltsverzeichnis

Zusammentassung				
1	Einl	eitung	3	
2		bereitende Grundlagen	9	
	2.1	Funktionenklassen		
		2.1.2 Funktionen von beschränkter Variation		
		2.1.3 Stetigkeitsmodul		
	2.2	Spezielle Funktionen		
		2.2.1 Gammafunktion		
	2.3	2.2.2 Verallgemeinerte hypergeometrische Funktion		
	2.4	Quadratur		
3		nogonale Polynome	19	
	3.1	Stetige orthogonale Polynome		
		3.1.1 Definition und Eigenschaften		
	3.2	3.1.2 Jacobi-Polynome		
	0.2	3.2.1 Definition und Eigenschaften		
		3.2.2 Hahn-Polynome		
4	Λ	vovimenties mit Delymenses	29	
4	4.1	roximation mit Polynomen Polynominterpolation		
	4.1	4.1.1 Polynominterpolation in äquidistanten Stützstellen		
		4.1.2 Polynominterpolation in Tschebyscheff-Stützstellen		
	4.2	Approximation mit Bernsteinpolynomen		
	4.3	Die Methode der kleinsten Quadrate	39	
		4.3.1 Der kontinuierliche Fall		
	4.4	4.3.2 Der diskrete Fall		
	4.4	Polynome bester Approximation	44	
5	Dive	ergenz der Methode der kleinsten Quadrate	47	
6	Pun	ktweise Konvergenz der Methode der kleinsten Quadrate	51	
	6.1	Hauptergebnis zur punktweisen Konvergenz	51	
	6.2	Folgerungen aus dem Hauptergebnis	74	

7	Glei	chmäßige Konvergenz der Methode der kleinsten Quadrate	79
	7.1	Hauptergebnis zur gleichmäßigen Konvergenz	79
	7.2	Folgerungen aus dem Hauptergebnis	85
	7.3	Vergleich zum kontinuierlichen Fall	90
	7.4	Vergleich zur Polynominterpolation	92
	7.5	Vergleich zur Approximation mit Bernsteinpolynomen	93
	7.6	Vergleich zu anderer Stützstellenwahl	94
	7.7	Vergleich zum Polynom bester Approximation	98
8	Nur	nerische Resultate	99
	8.1	Vergleich zu anderen Approximationsmethoden	100
		8.1.1 Vergleich zum kontinuierlichen Fall	101
		8.1.2 Vergleich zur Approximation mit Bernsteinpolynomen	103
		8.1.3 Vergleich zur Polynominterpolation	
	8.2	Variation der Stützstellenanzahl	107
		8.2.1 Vergleich mit größerer Stützstellenanzahl	108
		8.2.2 Vergleich mit geringerer Stützstellenanzahl	110
9	Aus	blick	115
Lit	terati	urverzeichnis	121