

Dave Hartig (Autor) Charakterisierung von Adsorbentien in der Flüssigphase mittels dynamischer Methoden

https://cuvillier.de/de/shop/publications/8167

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Kurzfassung

In dieser Arbeit wurde die Anwendung dynamischer Methoden zur Bestimmung von Adsorptionsgleichgewichten in der Flüssigphase betrachtet, wobei die zu untersuchenden Adsorbentien nicht zwingend dafür bzw. für chromatographische Anwendungen entwickelt wurden. Deswegen erfolgte zunächst eine umfassende Charakterisierung des Systems Zucker/Zeolith (insbesondere Sorbitol und Zeolith HBEA150 Extrudate) mittels statischer und dynamischer Methoden. Dabei konnten geeignete Prozessparameter für die dynamischen Methoden identifiziert werden, die zu Ergebnissen führten, die mit denen statischer Methoden vergleichbar sind. Zudem wurden auch mögliche Grenzen und Messunsicherheiten der Methoden und des verwendeten Messaufbaus untersucht.

Die Vorteile der dynamischen Methoden wurden an diesem System bei der schnellen Bestimmung vollständiger Isothermendaten mittels erweiterter *Elution by Characteristic Point* Methode (EECP), bei der Bestimmung der Adsorptionsenthalpie anhand eines Van't-Hoff-Diagramms durch die Perturbationsmethode sowie bei der Bestimmung der Anfangssteigung der Isotherme mittels EECP ausgenutzt. Im Van't-Hoff-Diagramm zeigten sich Abweichungen zur erwarteten Linearität im Bereich zwischen 20 °C und 40 °C, die weiter zu untersuchen sind. Bei geringen Konzentrationen ergaben die Verwendung von EECP sowie die weitere Auswertung mittels Adsorptionsgleichgewichtsverteilung einen doppelt so großen Wert für die Anfangssteigung der Isotherme im Vergleich zu der Anfangssteigung, die mittels Batch-Methode und linearer Regression ermittelt wurde, was eine besondere Relevanz für technische Anwendung darstellt.

Die Übertragung auf das System Protein/Ionentauscherharz (Bovines Serumalbumin bzw. bovines Hämoglobin und Q Sepharose Fast Flow) erforderte zwar eine Reihe weiterer Vorversuche, war darüber hinaus aber möglich. Aufgrund nicht-adsorptiver Effekte, insbesondere dem Größenausschluss, beim Einsatz dynamischer Methoden war die Anwendung hier allerdings nur in Kombination mit Batch-Messungen empfehlenswert. Ein deutlicher Vorteil bot sich jedoch bei der Anwendung von EECP bei geringen Konzentrationen, sodass prinzipiell eine genauere Anfangssteigung als durch Batch-Messungen bestimmte werden konnte.

Die Erkenntnisse zu beiden Systemen wurden schließlich zu einem Fazit zur Anwendbarkeit bei verschieden komplexen Systemen in Abhängigkeit des Kenntnisstands über das jeweilige System sowie entsprechende Handlungsempfehlungen zusammengefasst. Diese Arbeit leistet damit einen Beitrag, dynamische Methoden bei der Charakterisierung der Adsorption in Abhängigkeit der jeweiligen zu untersuchenden Systeme und Fragestellung als hilfreiches Werkzeug anwenden zu können.

Abstract

This work investigates the application of dynamic methods for the determination of adsorption equilibrium in the liquid phase. More specifically, the adsorbents should not necessarily be optimized for application in dynamic processes. For this purpose, a model system of sugar and zeolite (mostly sorbitol and zeolite HBEA150 extrudate) was characterized by static and dynamic methods. Feasible process parameters for the dynamic methods led to results comparable to static methods. Furthermore, limits of the methods and uncertainties in the measurements were determined.

The advantages of the dynamic methods were used on this system to determine complete isotherm data using the extended elution by characteristic point method (EECP) in the time and material saving way. Moreover, the determination of adsorption enthalpies via Van't-Hoff-plots benefited from the use of perturbation peak method. Interestingly, the expected linear relationship was not seen in a temperature range between 20 °C and 40 °C needing further investigation. Another advantage resulted in the use of EECP to determine the isotherm data at small concentrations. Here, a further analysis by adsorption equilibrium concentration showed a rather large initial slope of the isotherm what is of special interest for commercial applications.

The results were then transferred to a system of proteins and ion exchange resins (Bovine serum albumin or bovine hemoglobin and Q Sepharose Fast Flow) although several preliminary tests were needed. The results were influenced by non-adsorptive effects like size exclusion leading to a limited and careful application of dynamic methods. However, the determination of isotherm data at small concentrations via EECP again offered an important advantage and led to a more precise determination of the initial slope compared to static experiments.

The findings were then combined to a conclusion about the possible application of dynamic methods depending on the complexity and the knowledge of the system to be investigated. Recommended actions for different knowledge and complexity were verbalized. With it, this thesis contributes to the use of dynamic methods as helpful tool for characterization of adsorption in the liquid phase depending on the system and the question to be investigated.

Abkürzungs- und Symbolverzeichnis

Abkürzungen

AED	Adsorptionsenergieverteilung (von engl. Adsorption Energy Distribution)
AEqD	Adsorptionsgleichgewichtsverteilung (von engl. Adsorption Equilibrium Dis-
_	tribution)
BAS	Brønsted Acid Site
BET	Bestimmung der Oberfläche nach der Methode von Brunauer, Emmett und
	Teller
bHb	Bovines Hämoglobin
BSA	Bovines Serumalbumin
DEM	Double-Exponential Model
DFT	Dichtefunktionaltheorie
ECP	Elution by Characteristic Point
EECP	Extended Elution by Characteristic Point
EM	Expectation Maximization
FA	Frontalanalyse
FACP	Frontal Analysis by Characteristic Point
FCC	Fluid Catalytic Cracking
HPLC	Hochleistungsflüssigkeitschromatographie (von engl. High Performance Li-
	$quid\ Chromatography)$
ID	Innendurchmesser
IUPAC	International Union of Pure and Applied Chemistry
LAS	Lewis Acid Sites
PM	Peak Maximum
PP	Perturbation Peak
QSFF	Q Sepharose Fast Flow
SBU	Secundary Building Unit
SEC	Size Exclusion Chromatography
SMB	Simulated Moving Bed
VF	Viscous Fingering

Griechische Buchstaben

Beschreibung

Symbol

α	Steigung einer linearen Funktion	variabel
$\beta_{\rm LDF}$	Stofftransportkoeffizient im LDF-Modell	s^{-1}
γ	Achsenabschnitt einer linearen Funktion	variabel
ϵ	Porosität des Festbettes	$m_{Zwickelfluid}^3 \cdot m_{ges}^{-3}$
$\epsilon_{\rm p}$	Porosität der Adsorbenspartikel	$m_{Porenfluid}^3 \cdot m_{Pellet}^{-3}$
ϵ_{t}	Totale Porosität der Adsorbenspackung	$m_{Gesamtfluid}^3 \cdot m_{ges}^{-3}$
η	Dynamische Viskosität	$Pa \cdot s$
θ	Lokales Isothermenmodell	_

Einheit

θ	Temperatur	°C
$\mu_{ m t}$	Schwerpunkt eines Peaks	min
$\rho_{\rm Ads}$	Schüttgutdichte des Adsorbens	$kg \cdot m^{-3}$
σ	Anteil der bedeckten Adsorbensoberfläche	_
$\sigma_{ m t}$	Varianz eines Peaks	min
$ au_i$	Zeitkonstante des <i>i</i> -ten exponentiellen Terms	s
ϕ	Relative Sättigung	_

Lateinische Buchstaben

Symbol	Beschreibung	Einheit
$A_{\rm d}$	Querschnittsfläche des Festbettes	m^2
A_i	Amplitude des i -ten exponentiellen Terms	$mg \cdot g^{-1}$ oder –
a	Anzahl an Iterationen	
b_0	Präexponentieller Faktor	Pa^{-1}
$b_{\rm L}$	Langmuir-Parameter	Pa^{-1}
c_0	Ausgangskonzentration	$g \cdot L^{-1}$
c_{Ad}	Konzentration des Adsorptivs	$g \cdot L^{-1}$
$c_{\rm Ad}^{\circ}$	Dimensionslose Konzentration des Adsorptivs	-
C _{Ad,max}	Maximale Konzentration des Adsorptivs	$g \cdot L^{-1}$
Ce	Gleichgewichtskonzentration	$g \cdot L^{-1}$
c_{Tracer}	Konzentration des Tracers	$g \cdot L^{-1}$
$C^{\circ}_{\text{Tracer}}$	Dimensionslose Konzentration des Tracers	_
C _{Tracer,max}	Maximale Konzentration des Tracers	$g \cdot L^{-1}$
D	Diffusionskoeffizient	$m^2 \cdot s^{-1}$
d	Zerfallskonstante einer Exponentialfunktion	s^{-1}
d_{i}	Innendurchmesser der Säule	mm
$E_{\rm A}$	Adsorptionsenergie	$J \cdot mol^{-1}$
$E_{\rm A,Adsorptiv}$	Adsorptionsenergie des Adsorptivs	$J \cdot mol^{-1}$
$E_{\rm A,LM}$	Adsorptionsenergie des Lösungsmittels	$J \cdot mol^{-1}$
$E_{\rm Akt}$	Aktivierungsenergie	$kJ \cdot mol^{-1}$
F	Verdünnungsfaktor	_
f	Adsorptionsgleichgewichtsverteilung	$mg \cdot g^{-1}$
g	Anzahl an Gitterpunkten	-
\overline{H}	Henry-Koeffizient	$L \cdot g^{-1}$
$H_{\rm A}$	Adsorptionsenthalpie	$J \cdot mol^{-1}$
H^*	Scheinbarer Henry-Koeffizient, bestimmt bei $c_{\rm e} \gg 0$	$mL \cdot g^{-1}$
K	Langmuir-Koeffizient in der Flüssigphase	$L \cdot g^{-1}$
k	Kinetischer Parameter der Kondensation	$Pa^{-1} \cdot s^{-1}$
k'	Kinetischer Parameter der Verdunstung	s^{-1}
$L_{\rm c}$	Zurückgelegte Strecke einer Konzentrationsfront	m
M	Molare Masse	$g \cdot mol^{-1}$
m	Heterogenitätskoeffizient	
m_0	Masse der Lösung	mg
$m_{\rm akk}$	Akkumulierte Masse	g

$m_{\rm A}$	Masse des Adsorbens	g
$\bar{m}_{\rm ads}$	Auf dem Adsorbens adsorbierte Masse	g
$m_{\rm disp}$	Durch Dispersion übertragene Masse	g
$m_{\rm konv}$	Durch Konvektion übertragene Masse	g
$m_{ m mt}$	Durch Massentransfer übertragene Masse	g
n	Anzahl an experimentellen Datenpunkten	_
$N_{\rm t}$	Theoretische Trennstufenzahl	_
$p_{\rm s}$	Sättigungsdampfdruck	Pa
p_i	Partialdruck	Pa
pI	Isoelektrischer Punkt	_
q	Reale Beladung	$mg \cdot g^{-1}$
q^{ex}	Exzessbeladung	$mg \cdot g^{-1}$
$\overline{q_i}$	Reale Beladung der Komponente i	$mg \cdot g^{-1}$
$q_{\rm max}$	Maximale Beladung	$mg \cdot g^{-1}$
$q_{\rm mon}$	Monomolekulare Bedeckung	$mol \cdot m^{-2}$
$q_{\rm s}$	Sättigungsbeladung	$mg \cdot g^{-1}$
$q_{\rm s.end}$	Berechnete Gesamtsättigungsbeladung im Gleichgewicht	$mg \cdot g^{-1}$
R	Universelle Gaskonstante	$J \cdot mol^{-1} \cdot K$
r	Radius des Partikels	m
$S_{\rm A}$	Adsorptionsentropie	$J\cdot mol^{-1}\cdot K$
T	Temperatur	Κ
t_0	Totzeit	min
$t_{0,5}$	Halbwertszeit	s
$t_{\rm A}$	Anlagenzeit bzw. Verweilzeitprofil der Anlage	min
$t_{\rm inj}$	Injektionszeit	min
$t_{\rm R}$	Retentionszeit	min
$t_{\rm S}$	Verweilzeit des Fluids im Festbett	min
$u_{\rm int}$	Zwickelgeschwindigkeit der mobilen Phase im Festbett	$\mathbf{m}\cdot\mathbf{s}^{-1}$
u_{leer}	Leerrohrgeschwindigkeit	$\mathrm{mm}\cdot\mathrm{min}^{-1}$
$u_{\text{leer,korrigiert}}$	Korrigierte Leerrohrgeschwindigkeit	$\mathrm{mm}\cdot\mathrm{min}^{-1}$
um	Effektive Geschwindigkeit des porengängigen Fluids	$m \cdot s^{-1}$
$V_{\rm Ads}$	Volumen der Partikel der stationären Phase	L
V_{fest}	Absolutes Volumen des Feststoffadsorbens	L
$V_{\rm L}$	Volumen der Lösung	mL
$V_{\rm Mob}$	Volumen der mobilen Phase	L
$V_{\rm Pore}$	Porenvolumen des Feststoffadsorbens	L
\dot{V}	Volumenstrom	$\mathrm{mL}\cdot\mathrm{min^{-1}}$
x	Wert einer beliebigen Messgröße	variabel
Δx	Unsicherheit einer Messgröße x	variabel
y	In der HPLC bestimmte Fläche	$mV \cdot s$

Abbildungsverzeichnis

2.1. 2.2.	Übersicht der verschiedenen Adsorptionsisothermen nach IUPAC Übersicht der verschiedenen Hysterese-Formen nach IUPAC	$\frac{4}{6}$
3.1.	Schema Profilkorrektur EECP	32
4.1. 4.2.	Bestimmung der Adsorptionskinetik mittels Melezitose-Ausschluss Bestimmung der Adsorptionskinetik	$\frac{38}{41}$
4.3.	Bestimmung der Langzeitkinetik	44
4.4.	Entwicklung des Henry-Koeffizienten von Sorbitol an Na-BEA150 bei Lagerung	45
4.5.	Arrhenius-Diagramm der Kinetik	46
4.6.	Messunsicherheiten bei statischen Versuchen	48
4.7.	Konzentrationsabhängige Retentionszeit von Saccharose	53
4.8.	Mittels EECP ermittelte Glucose-Isotherme	54
4.9. 4.10.	Veränderung der gemessenen Porosität mit zunehmender Säulennutzung . Veränderung des gemessenen Henry-Koeffizienten mit zunehmender Säulen-	57
	nutzung	59
4.11. 4.12.	Erkennung von <i>Viscous Fingering</i> in Elutionspröfilen	63
4 1 0	Zucker-adsorption	65
4.13.	Einfluss der Leerrohrgeschwindigkeit auf die mittels EECP bestimmte Iso-	e e
4.1.4	Depreduzierherkeit von EECD laatharman bei verschiedenen Säulen zoom strien	67
4.14.	Finfluss des Säulenvoluments auf den Verdünnungsfaltter	60
4.15.	Einfluss von Säulenvolumen und Henry-Koeffizient auf die relative Messun- sicherheit	71
- -		
5.1. 5.2.	Adsorptionskinetik von BSA und QSFF Isotherme von bHb and QSFF	75 77
5.3.	Henry-Koeffizient bei verschiedenen Leerrohrgeschwindigkeiten bei der Pro-	
5.4.	teinadsorption	80 81
6.1.	Isothermen von Glucose und Fructose in H-BEA150 Extrudat aus Søren-	
	senpuffer	88
6.2. 6.3.	Vergleich EECP und Batch bei geringen Konzentrationen Vergleich der AEqD aus EECP- und Batch-Daten bei geringen Konzentra-	91
	tionen	92
6.4.	Vergleich EECP und Batch bei geringen Konzentrationen	95 07
0.5.	van t-non-Diagramm für die Adsorption von Ethanol in n-BEA150 Extrudat	97
A.1.	Partikelgrößenverteilung des gemörserten H-BEA 150 Extrudats	125
A.2.	Partikelgrößenverteilung des gemörserten H-BEA 150 Extrudat s $<100\mu{\rm m}$	126
A.3.	Partikelgrößenverteilung der H-BEA 150 Pulverzeolithe	126
A.4.	Rasterelektronenmikroskopische Aufnahme des gemörserten H-BEA 150	
	$Extrudats < 100 \mu m$	127

A.5.	Porengrößenverteilung des H-BEA 150 Extrudats aus Stickstoffadsorption	129
A.6.	Porengrößenverteilung des H-BEA 150 Extrudats aus Hg-Porosimetrie	129
A.7.	Hydrolyseprodukte von Glucose, Maltose, Melezitose und Saccharose	130
A.8.	Isotherme von Sorbitol in H-BEA 150 Extrudat bei Raumtemperatur aus	
	Wasser	131
A.9.	Isotherme von bHb an QSFF bei $35^{\rm o}{\rm C}$ und BSA bei Raumtemperatur	132

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persöglichen Gebrauch.

Tabellenverzeichnis

2.1.	Überblick über die Eigenschaften der Proteine BSA und bHb $\ \ldots\ \ldots\ \ldots$	25
3.1.	Übersicht über verwendete Geräte	27
3.2.	Übersicht über verwendete Chemikalien	28
3.3.	Übersicht über verwendete Software	28
3.4.	Bevorzugte Bestandteile und Einstellung der HPLC	30
4.1.	Vergleich der Diffusionskoeffizienten verschiedener Stoffe bei der Adsorption	
	in Pulverzeolithen und Zeolithextrudaten	43
4.2.	Gleichgewichtsdaten für die Adsorption von Sorbitol und Glucose in	
	H-BEA150 Extrudat	49
4.3.	Eignung verschiedener Zucker als Tracer für dynamische Versuche	56
4.4.	Abhängigkeit des Retentionsvolumens von der Saccharosekonzentration	61
4.5.	Einfluss der Konzentration auf Momente und Auftreten von Viscous Fingering	62
4.6.	Vergleich des Verdünnungsfaktors bei verschiedenen Säulendimensionen	68
6.1.	Vergleich von Sättigungsbeladung und Langmuir-Parameter verschiedener	
	Soribtol-Isothermen	93
6.2.	Überblick über die Anwendbarkeit dynamischer Methoden	99

1. Einleitung

Aufgrund der hohen Selektivität sind die Adsorption und die darauf basierende Chromatographie insbesondere dann vorteilhafte Trenn- oder Reinigungsverfahren, wenn eine Wertkomponente bzw. Verunreinigung in geringer Konzentration oder in einem komplexen Gemisch vorliegt [1]. Da die Adsorption zudem bei niedrigen Prozesstemperaturen bevorzugt ist, zeigen sich weitere Vorteile bei temperatursensitiven Produkten. Folglich ergeben sich verschiedene industrielle Anwendungsfelder von der Reinigung von Abwasser- und Abgasströmen über die Luftzerlegung bis hin zur chromatographischen Aufreinigung von Fermentationsbrühen in der biotechnologischen Herstellung pharmazeutischer Produkte [1–5]. Insbesondere die Verwendung in der Flüssigphase zeigt dabei jüngst ein gestiegenes Interesse, z.B. bei der Aufreinigung von Zuckern aus Lignocellulose-Strömen [6, 7] oder bei der reaktionsintegrierten Adsorption sogenannter *rare sugars* [8–10].

Für all diese Prozesse ist die Kenntnis von Gleichgewichtsdaten eine Grundlage, um zunächst ein geeignetes Adsorbens für die Verfahrensaufgabe auszuwählen und anschließend den Gesamtprozess korrekt auszulegen. Während dazu in der Gasphase bereits leistungsfähige Simulationen zur Abschätzung der Gleichgewichtsbeladung wie auch zur *in-silico* Optimierung der Interaktion von Adsorptiv mit Adsorbens zur Verfügung stehen [11–14], ist die Simulation in der Flüssigphase aufgrund der Co-Adsorption des Lösungsmittels und des hohen Bedeckungs- bzw. Porenfüllgrades problematisch [15]. Aus diesem Grund steht in der Flüssigphase die experimentelle Bestimmung von Gleichgewichtsdaten im Vordergrund und es stellt sich regelmäßig die Frage, mit welchen Methoden das betreffende System im Hinblick auf die interessierenden Fragestellung idealerweise zu untersuchen ist [16, 17]. Übergeordnetes Ziel dieser Arbeit ist es, diese Frage für Adsorbentien zu untersuchen, die nicht für chromatographische Anwendungen entwickelt oder in Säulen gepackt wurden und deswegen bei der Untersuchung mittels dynamischer Methoden zu vergleichsweise hoher axialer Dispersion und damit geringen theoretischen Trennstufenzahlen führen.

Der erste Teil dieser Arbeit zielt folglich darauf ab, Adsorptionsgleichgewichte in der Flüssigphase an dem Modelladsorbens Zeolith vergleichend mittels verschiedener Methoden experimentell zu bestimmen. Während dabei aufseiten der statischen Methoden die sogenannte Batch-Methode eingesetzt wird, die bereits als etabliertes Verfahren im Bereich der Flüssigphasenadsorption bewährt ist [18, 19], ist für die verwendeten dynamischen Methoden nicht direkt ersichtlich, ob die Anwendung auf Adsorbentien bzw. Adsorbenspackungen, die nicht für die Chromatographie optimiert wurden, überhaupt praktikabel und vorteilhaft ist. Ein besonderer Schwerpunkt des ersten Ergebnisteils liegt demnach darauf, die drei besonders vielversprechenden dynamischen Methoden *Elution by Characteristic Point* (theoretisch vollständige Isotherme bei minimalem Materialauf-

1. Einleitung

wand). Peak Maximum (robust bei mittlerem Materialaufwand) und Perturbation Peak (hohe Genauigkeit bei hohem Materialverbrauch) im Hinblick auf eine Anwendung in selbstgepackten Säulen mit geringen Trennstufenzahlen zu untersuchen. Alle Methoden basieren auf dem Gleichgewichtsmodell der Chromatographie und insbesondere Elution by Characteristic Point ist dabei ursprünglich nur für hoch optimierte Adsorbentien bzw. Packungen mit deutlich über 1.000 theoretischen Trennstufen ausgelegt und liefert bei abnehmenden Stufenzahlen zunehmend falsche Ergebnisse [20, 21]. Deswegen wird hier eine Erweiterung dieser Methode verwendet, die auch als Extended Elution by Characteristic Point bezeichnet wird [22, 23]. Diese erfasst auftretende Nichtidealitäten, insbesondere die axiale Dispersion, durch eine umfassendere Auswertung von Markierungsexperimenten. Bei der Anwendung der dynamischen Methoden wird weiterhin der Einfluss der Prozessund Anlagenparameter untersucht und darauf aufbauend die Besonderheiten und Grenzen der Methoden diskutiert. Hierbei werden auch die Unterschiede in den resultierenden Messunsicherheiten bei der Anwendung statischer und dynamischer Methoden betrachtet. Im zweiten Teil dieser Arbeit werden die Erkenntnisse zur Anwendung dynamischer Methoden auf die Adsorption von Proteinen an einem Ionentauscherharz übertragen. Ein Ziel dabei ist es generelle Hinweise zur Übertragbarkeit und zu nötigen Voruntersuchungen bzw. nötigem Vorwissen abzuleiten. Zum anderen handelt es sich dabei jedoch auch um ein komplexeres System aufgrund der breiten Porenradienverteilung des Adsorbens sowie der starken Beeinflussung der adsorptiven Wechselwirkung durch die Pufferbedingungen, sodass die Anwendung dynamischer Methoden auf dieses komplexere System auch für sich alleine interessante Einblicke liefern kann.

Aufbauend auf diesen Erkenntnissen wird im dritten Teil kritisch diskutiert, unter welchen Bedingungen dynamische Methoden im Vergleich zu den statischen Methoden Vorteile bieten können. Dazu werden auch beispielhafte Anwendungsmöglichkeiten, wie der Einsatz zur Bestimmung von Gleichgewichtsdaten von Substanzen mit einem geringen Materialeinsatz, die Möglichkeit verschiedene Prozessbedingungen an ein und derselben Adsorbenspackung zu untersuchen sowie die Bestimmung der Gleichgewichtsdaten im Bereich geringer Konzentrationen, betrachtet. Letzteres wird in der weiteren Auswertung zudem durch die Bestimmung sogenannter Adsorptionsgleichgewichtsverteilungen unterstützt, die eine weitgehend unvoreingenommene Anpassung von Modellisothermen an die experimentellen Daten erlauben. Zuletzt werden Handlungsempfehlungen gegeben, wie abhängig vom Vorwissen über das zu untersuchende System und dessen erwarteter Komplexität dynamische Methoden vorteilhaft eingesetzt werden können.