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Chapter 1  Introduction 

 

The transformation from a fossil fuel based to a sustainable, climate-neutral society is the 

greatest challenge of humanity in the 21st century. Failure will result in irreversible loss 

in biodiversity, sea level rise, droughts and more extreme weather phenomena on the 

entire planet.[9] Governments are already taking concrete climate action. However, if the 

pledged goal of the Paris Climate Agreement to limit global warming to 1.5 °C are to be 

met this will need to accelerate even further, soon. As one of the leaders in global per 

capita emissions, the European Union (EU) has set a target to be climate-neutral by 2050. 

Note that this entails cutting current emissions by a factor of more than sixteen[10] or 

offsetting them by carbon capture. In 2017, transportation accounted for 22 % of 

European climate forcing emissions.[11] Consequently, fossil-fueled mobility is clearly 

unsustainable and the EU set the CO2 fleet emission target to 95 g km-1 by 2020 with 

targeted reductions to 68-75 g km-1 by 2025. Clearly, these numbers must tend toward 

zero in the following years and, indeed, the commission has put forward plans to end wide-

spread use of internal combustion engines by 2035. For passenger cars, industry trends 

tend towards electric vehicles (EV) or plugin-hybrid electric vehicles (PHEV) to reach 

these targets. Other options such as fuel-cells, synthetic fuels or smaller cars are held back 

by high cost, low energy efficiency or consumer preference. 

Lithium-ion battery (LIB) technology was the key factor to enable this new age of electric 

vehicles.[12] Their high energy-density enabling ranges of more than 400 km, low-self 

discharge and comparably long lifetime satisfy consumer needs even for luxury cars. With 

increasing industrialization, technological and material improvements cost for LIBs is 

dropping far enough to soon compete with internal combustion engines - regardless of 



2  Introduction 

 

 

 

regulation.[13] In such a mass market, battery lifetime must be guaranteed for customer 

satisfaction, warranty and leniency considerations. Due to the frontloading of energy 

consumption of electrified vehicles in production, some jurisdictions even impose 

regulatory requirements for lifetime to ensure sustainability.[14] Reliable lifetime 

prediction is thus imperative to assess and control risks of this new technology. 

Lifetime of LIBs is not only affected by external environmental exposure such as 

corrosion or vibration, but also by complex mechanical and electrochemical effects 

originating from inside the cells.[15] For many external effects mitigation strategies and 

accelerated test for assurance are well known. Among them are thermomechanical 

stress[16–18], environmental corrosion[19] and vibration[20–23]. On the contrary, merely 

storing LIBs in so-called calendar aging causes electrochemical degradation that based on 

current theories cannot be avoided and does not stop. In addition, when cells are operated 

in cyclic aging multiple degradation phenomena can occur that differ on the applied loads 

and temperature. Literature[3,24,25] has even proven in multiple cases that aging 

mechanisms can interact. These effects can limit the system performance due to degraded 

capacity and increased resistance or even threaten the system safety due to cell opening 

or module deformation. A module usually consists of stacked cells to integrate cells to a 

mechanically stable system. Indeed, the lifetime limiting factor may be different in 

different cells due to differing geometry, housing, materials and chemistry. Due to this 

complexity, prediction models are often based on physical principles and generalizing 

assumptions in order to quantitatively predict degradation. Thankfully, many research 

groups[1,26–29] compete in an enormous effort to develop new and better models to 

reduce uncertainties. 

1.1 Motivation and goals of the thesis 

The earliest lifetime prediction models for lithium-ion batteries have been introduced in 

the first few years of the new millennium.[30,31] These early models were based on 

theoretical considerations for calendaric aging of single cells. Specifically, they try to 
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model the aging induced due to growth of the anodic solid passivation layer on commonly 

used graphite. In this chapter, these concepts themselves will not be elucidated in detail 

yet, but they will be properly introduced and discussed in Chapter 2. These theoretical 

models included hard-to-measure parameters that are simply fitted to measured aging 

behavior of cells. The models often consist of simple mathematical equations for the two 

main performance indicators for degradation, capacity and resistance. Furthermore, when 

theory could not explain certain behavior - famously the charging state dependence – 

empirical terms with additional fitting parameters were appended.[32] Additional 

simplifications made it possible to fit aging data sets globally instead to aging of single 

cells. This allows for interpolation and extrapolation to conditions not included in the 

aging data set. The resulting so-called semi-empirical models could fit given aging data 

well. Increasing the amount of fitting parameters, however, may critically favor models 

that merely fit well to given data, but make inaccurate predictions at other conditions, in 

a phenomenon generally referred to as overfitting. Importantly for calendaric aging, the 

behavior in rapidly degrading tests at high temperature could be used to extrapolate the 

slow aging behavior at lower temperature using an Arrhenius dependency.[27] 

Cyclic aging has been similarly modeled with mostly purely empirical and rarely semi-

empirical models. Especially the widely used empirical models have little extrapolative 

power. However, despite being exhaustive it is possible to test the entire estimated energy 

throughput and the corresponding aging making such models viable.[1] For comparison, 

testing for calendar aging over the years of vehicle lifetime is infeasible.[1] Despite recent 

doubts,[33,34] calendaric and cyclic aging are often calculated independently and 

cumulated additively to a total sum.[29,35,36] This includes the assumption, that aging 

is path independent. 

With the proliferation of electric vehicle development in recent years, the above literature 

models have been adopted in industry. These modeling principles can be expanded to 

determine the aging state of the entire battery system made of multiple cells.[35] There 

are many use cases for aging models. Classically, battery lifetime due to estimated 
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consumer behavior can be calculated and compared to consumer expectation of batteries 

retaining performance for 200-300’000 km and 10-15 years.[1,23] Often, consumer 

behavior distributions are used to estimate failed batteries in the entire fleet to assess risks, 

size reserves for warranty and leniency cases and comply with regulatory conditions.[1] 

In reverse, the models can be used to identify and rank consumer loads in terms of aging 

or even to optimize operating strategy to restrict critical loads. Succinctly, the models 

yield grand statements. 

 
Figure 1.1 Complexity diagram for lithium-ion battery aging interacting on different scales. 
Effects can have backtracking effects by changing parameters and affect performance. Concept 
explanations will follow in this thesis.  

Still, current methods to estimate lithium-ion battery lifetime are relatively simple, 

especially when compared to the complexity and plethora of aging mechanisms.[15] 

Indeed, there are multiple effects that can theoretically limit cell operation just on cell 

level as will be discussed in Chapter 2. Further limitation appears with higher system 

integration that are influenced by underlying aging mechanisms. In order to meet 

customer requirements for the battery system, module performance in terms of capacity 

and resistance as well as integrity and safety must be assured. In order to illustrate the 

complexity[37], Figure 1.1 shows select aging effects and their generalized interactions on 
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different scales. An illustration offering all singleton interactions separately would be 

unclear. To reiterate, the effects will be properly introduced in Chapter 2. For now, 

Figure 1.1 shows that aging effects can directly affect larger scales, performance, such as 

available capacity or resistance, and general parameters, such as temperature and 

pressure. Especially the effect on these parameters can cause a backpropagation to smaller 

scales. Recognizing the interplay of mechanisms on different scales was crucial in 

literature to understand and explain, to merely name a few, plating behavior in gassed 

cells[24], pressure induced plating in flat wound cells[38] or electrode crosstalk reducing 

gassing.[25] All these chains of effects can be redrawn within Figure 1.1. While Figure 1.1 

does not account for the degree of influence, it does illustrate that all aging effects are 

coupled. This means that aging models must identify and focus on the most important 

degradation modes in order to be practical to parameterize and use. This is the general 

area of conflict and tradeoff in LIB aging modeling. Simplifications are necessary[37], but 

must be carefully argued for given the complexity. Indeed, the previously discussed 

overfitting is another example of this tradeoff. 

The pathway to better, more accurate models is to include more physiochemical 

effects[37] and modeled parameters that do not increase complexity unnecessarily. These 

are best derived by theoretical considerations in order to constrain model degrees of 

freedom and prevent overfitting. The application of this concept has already resulted in 

powerful predictive tools in literature in the last years expanding and improving existing 

semi-empirical models.[29,39] 

The goal of this work is to use this strategy in order to improve battery life-time 

predictions for two very important phenomena. The first focus lies on the highly impactful 

anodic solid passivating layer.[40] It grows to substantial thicknesses[5] and can affect 

the system by consumption of cyclable lithium[41], impedance of efficient charge 

transport[27], gas evolution[42] and changes to the microstructure and thus even cell 

thickness expansion[43]. In fact, the layer grows inevitably[31] both due to calendar[1] 

as well as cyclic aging[39] and is – in many cases – dominating cell aging as a whole.[44] 
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The second focus lies on the prediction of pressure development on the module scale due 

to cell thickness growth as this can critically limit system lifetime and pose safety 

risks.[2,3] The understanding of pressure evolution can pave the way for informed module 

design decisions that extend the system lifetime.[3] 

1.2 Contributions and structure of the thesis 

In order to put the contributions of this thesis into context and a structure, the published 

scientific contributions are listed here first. This thesis produced several full-length 

articles[1–4] with the candidate as fully contributing main author: 

 Reference [1] published in the Journal of Power Sources in 2018: 
 

S. Hahn, M. Storch, R. Swaminathan, B. Obry, J. Bandlow and K.P. Birke 
Quantitative validation of calendar aging models for lithium-ion batteries 

 

 Reference [2] published in the Journal of Energy Storage in 2020. Both first and second author 
listed in alphabetical order contributed equally: 
 
T. Deich, S. Hahn, S. Both, K.P. Birke and A. Bund 
Validation of an actively-controlled pneumatic press to simulate automotive module Stiffness for 
mechanically representative lithium-ion cell aging 

 

 Reference [3] published in the Journal of Energy Storage in 2021: 
 

S. Hahn, S. Theil, J. Kroggel and K.P. Birke 
Pressure Prediction Modeling and Validation for Lithium-Ion Pouch Cells in Buffered Module 
Assemblies 

 

 Reference [4] published in the book Modern Battery Engineering in 2019. This article did not 
undergo a standard peer-review process. 

 
S. Hahn and K.P. Birke 
Every Day a New Battery: Aging Dependence of Internal States in Lithium-ion Cells 
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Furthermore, several articles[5–8] including contributions of this thesis were or are being 

published: 

 Reference [5] pushlished in the Journal of Power Sources in 2019: 
 

M. Storch, S. Hahn, J. Stadler, R. Swaminathan, D.Vrankovic, C. Krupp and R. Riedel 
Post-mortem analysis of calendar aged large-format lithium-ion cells: Investigation of the solid 
electrolyte interphase 

 

 Reference [6] published in the Journal of Energy Storage in 2019: 
 

J.P. Fath, D. Dragicevic, L. Bittel, A. Nuhic, J. Sieg, S. Hahn, L. Alsheimer, B. Spier, T. Wetzel 
Quantification of aging mechanisms and inhomogeneity in cycled lithium-ion cells by differential 
voltage analysis 

 

 Reference [7] published in the Journal of Energy Storage in 2019: 
 

J.P. Fath, L. Alsheimer, M. Storch, J. Stadler, J. Bandlow, S. Hahn, R. Riedel, T. Wetzel 
The influence of the anode overhang effect on the capacity of lithium-ion cells – a 0D-modeling 
approach 

 

 Reference [8] published in the Journal of Power Sources in 2021: 
 

O. Kessel, T. Deich, S. Hahn, F. Brauchles, D. Vrankovic, T. Soczka-Guth and K.P. Birke 
Mechanical impedance as a tool for electromechanical investigation and equivalent modeling of 
lithium-ion batteries 

 

 Paper to be submitted to Nature Energy in 2021: 
 

K. Schofer, F. Laufer, J.Stadler, S. Hahn, G. Gaiselmann and K.P. Birke 
Machine learning based lifetime prediction of lithium-ion cells 

 

In the following, an overview of the structure of this work is presented. Within, the 

contributions of this thesis to each of the published articles in Ref. [1–8] are put into 
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context. Both Ref. [1] and [4] encompass the first focus of the thesis on the solid surface 

layer on the anode while Ref. [2] and [3] embody the second focus on the pressure 

evolution of aging modules. Given the complexity of aging displayed in Figure 1.1, 

however, it is unsurprising that the two topics are all but separate. Indeed, as shown in 

Ref. [3] cell growth is attributed to the surface layer growth on the anode. The structure 

of the thesis reflects this dependency. 

Starting in Chapter 2, the fundamentals of lithium-ion technology that build the basis for 

this thesis are introduced based on a detailed literature review. Starting with electrode 

potentials, the discussion is based on the half-cell framework developed in the theoretical 

work of Ref. [4]. Changes to electrode states due to different reactions are tracked based 

on charge flow. Within the framework, simple operation principles as well as the complex 

aging mechanisms such as the important anode passivating layer are discussed in detail. 

Understanding aging reactions on this level yields two key insights heavily relied on in 

this work. The first is the principle of limitation between the main degradation modes of 

a cell. The second is the readout of these main degradation modes from merely features of 

non-destructively obtained discharge curves using so-called differential voltage analysis. 

In Ref. [6] this feature based deduction was automated and optimized in order to quantify 

aging modes even in highly degraded cells. This method also detected planar aging mode 

inhomogeneities which lead to the modeling of the overhang effect in Ref. [7]. The 

overhang effect is also discussed in detail in this chapter. 

Chapter 3 presents the overarching experimental details of the different investigations. 

The automotive cells investigated in this work as well as the cycling conditions and 

parameter tests used to characterize them are presented. Disassembly and post-mortem 

procedures detailed here can validate model assumptions and reveal aging modes. 

In the following three chapters, the results of this thesis are presented. The beginning of 

each is structured similarly. A chapter summary places the topic within the context of the 

entire thesis and gives an overview of the content. In the following, the chapter topic is 

introduced and motivated as well as relevant insights from literature are presented. 
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In Chapter 4, theoretical considerations of the solid surface layer on the anode in Ref. [1] 

show that many widely-used time dependencies in literature models are wrongly applied 

to data and suggest a model correction. This novel semi-empirical model is parameterized 

experimentally using two matching methods and does not introduce additional degrees of 

freedom. In order to properly compare the performance to competing literature models, 

the dataset was split into varying portions for training and validation inspired by machine 

learning. Based on this, the reduced predictive error and superior performance of the 

developed model is quantitatively validated. This approach also reveals downfalls of 

overfitting models previously proposed in literature. The work contributed the idea to 

directly train machine learning models for lifetime prediction using the predictive error as 

a fitness function. Indeed, Schofer et al. will soon publish an evolutionary symbolic 

regression algorithm that surpasses the model of Ref. [1] in some aspects. Still, the 

algorithm model suffers from extrapolative limitations. This is a common challenge in the 

current push towards machine learning lifetime prediction in literature. Furthermore, the 

extensive aging matrix published in Ref. [1] with 54 automotive cells has been used for 

analysis with depth-resolving spectroscopy in Ref. [5]. This article was able to reveal 

layered structures of the very thin anode passivation layer for the different aging 

conditions. 

Chapter 5 moves toward understanding the cell expansion that causes pressure evolution 

in aging modules. Based on force equilibrium considerations, an expanding cell stack on 

one hand put the surrounding module under tension which, on the other, puts the stack 

under pressure. The pneumatic cell press published in Ref. [2] is introduced that may 

simulate this mechanical environment for the cells during their operation. An active 

feedback control loop was developed that may not only control forces accurately, but also 

reenact the tensile stiffness of a module surrounding the cell in a system. The exact 

regulation to forces also enables the measurement of mechanical impedances which has 

been exploited in Ref. [8]. Furthermore, the setup builds the basis for parameterization 

and validation experiments needed in the modeling effort in the following chapter. 
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Chapter 6 endeavors to measure, model and validate the evolution of pressure in aging 

modules. A literature review on cell growth mechanisms causing the pressure is contrasted 

to experimental results of the investigated cell. Both detailed post-mortem and 

microscopy image analysis reveal cell growth to correlate to the anodic passivation layer 

thickness disproving some literature theories. Based on this and force equilibrium 

considerations, a module model is developed that resolves the pressure evolution due to 

aging. The model is successfully validated with the measured pressure development of 

22 aging modules with different designs. Industry has introduced buffer layers to modules 

to retain medium pressures over aging which can now be understood on a model basis. In 

fact, with the model these buffer layers as well as the entire module can be optimized for 

an improved lifetime. 

Chapter 7 summarizes and puts the work into perspective. The results are discussed 

critically in light of future trends in terms of cell formats and developments in literature. 


