

Gerald Hauser (Autor)

Qualifizierung von Rußpartikeln durch Kombinationen von elektrostatischen Feldeinflüssen

https://cuvillier.de/de/shop/publications/8980

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhaltsverzeichnis

1	Eir	ıleitur	ung	1			
	1.1	Mot	otivation	1			
	1.2	Auf	ufgabenstellung	3			
2	Sta	and de	der Partikelmesstechnik	Δ			
			Ausgewählte Rußmessverfahren				
			Schwärzungszahl				
2.1.1 2.1.2 2.1.3			Fotoakustisches Messverfahren				
			Laser Induced Incandescence Soot Analyser (LI ² SA)				
		1.4	Streulichtverfahren				
			Rußladungsverfahren nach Pegasor				
		1.5	Mobilität geladener Partikel				
		1.6					
		1.7	Resistiver Partikelsensor				
	2.2		erwendete Vergleichsmessgeräte				
		2.1	Licht Absorptionsverfahren (Opazimetrie)				
	2.	2.2	Scanning Mobility Particle Sizer (SMPS)				
		2.2.2.	5 1 1 1 6 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1				
	2.2.2 2.2.2						
			2.3 Condensation Particle Counter (CPC)	16			
	2.3	Anfo	nforderung an die Rußmesstechnik	17			
	2.	3.1	On-Board-Diagnose (OBD)	17			
	2.	3.2	Einsatz im Messgerät	18			
	2.	3.3	Vergleich der verschiedenen Rußmessverfahren	18			
		2.3.3	3.1 OBD-Verfahren	18			
		2.3.3	3.2 Analyse durch Abgasprobenahme	19			
3	Gr	undle	legende Eigenschaften von Rußpartikeln	21			
-	3.1		narakterisierung von Partikeln am Beispiel von Ruß				
	3.	1.1	Entstehung von Ruß				
	3.	1.2	Aufbau von Primärpartikeln	22			

	3	.1.3	Definition des Partikeldurchmessers d_P agglomerierter Partikel	25		
	3	.1.4	Definition der Partikel Fraktalität \mathcal{D}_f	26		
	3	.1.5	Fraktalität und Anzahl von agglomerierten Partikeln	28		
	3.2	Bew	vegung von Partikeln	30		
	3	.2.1	Reibungskraft der Partikel	30		
	3.2.1.		Die freie Weglänge λ des Trägergases [68]			
3.2.1.		3.2.1	.2 Cunningham-Korrektur[69]	32		
	3	.2.2	Wirkung von elektrischen Feldern auf elektrisch leitende Partikel	33		
		3.2.2	.1 Bolzmann Ladungsverteilung der Partikel	34		
		3.2.2	.2 Coulombkraft	37		
		3.2.2	.3 Influenzierte Kraftwirkung auf elektrisch leitende Partikel	37		
4	Τŀ	1656 71	ur Funktionsweise des Rußladungsverfahrens	40		
•	4.1		sensor nach Smolenski [13]			
	4.2		te Ladungssensorbauart			
5	Gı		gen der mathematischen Modellbildung			
	5.1		trisches Feld der Elektrodenanordnung des Sensors			
	5.2		unterschiedlichen Kraftwirkungen auf die Partikel im Vergleich			
	5.3	Drif	tgeschwindigkeit der Partikel	53		
	5	.3.1	Beschleunigungszeit der Partikel	56		
	5.4	Anla	agerung der Partikel an umströmten Drähten	57		
	5	.4.1	Umströmen der Elektrodendrähte	57		
	5	.4.2	Iterative Berechnung der Partikelflugbahn			
	5	.4.3	Unabhängigkeit von der Gasgeschwindigkeit	63		
	5.5	Eige	enschaften von Dendriten auf der Elektrodenoberfläche	66		
	5	.5.1	Ladungsverteilung entlang des Dendritens	67		
5.5.2		.5.2	Berechnung der Dendritenladung	72		
	5	.5.3	Das elektrische Feld eines Dendriten	76		
	5	.5.4	Wachstum von Dendriten durch elektrische Felder	78		
	5.6	Mat	hematisches Modell zur Vorhersage des Messsignals	79		
	5	.6.1	Driftgeschwindigkeit der Partikel an der Messelektrode	79		

	5.6	5.2	Der Ladungsstrom an der Messelektrode	81
	5.7	Disk	sussion des mathematischen Modells	86
6	Ve	rgleic	h der modellierten Ergebnisse mit realen Messungen	. 88
	6.1	Vers	suchsdurchführung	89
	6.3	1.1	Beschreibung des Versuchsaufbaus	89
	6.3	1.2	Beschreibung des hergestellten Rußsensors	90
	6.2	Cha	rakterisierung des Dieselabgases	91
	6.2.1		Partikelgrößenverteilung im Abgas des Dieselmotors	91
	6.2.2		Vergleich berechneter mit gemessener Partikelanzahlkonzentration	94
	6.3	Bere	echnung des Messsignals mit Hilfe des mathematischen Modells	96
	6.4	Ver	gleich mit Prüfstandsmessungen	99
	6.4.1		Linearität und Geschwindigkeitsabhängigkeit des Messsignals	99
6.4.2		4.2	Einfluss der Hochspannung auf das Messsignal	101
7	Zus	samm	nenfassung und Ausblick	103
	7.1	Zusa	ammenfassung	103
	7.2	Fazi	t	106
	7.3	Wei	terführende Themen	107