

Peter Abele (Autor) Eine Integrationstechnik auf Waferebene für Millimeterwellenschaltungen unter Verwendung von Techniken aus der Mikromechanik

https://cuvillier.de/de/shop/publications/1804

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhaltsverzeichnis

1 Einleitu	ng
------------	----

2	Der Silizium-Germanium-Heterobipolartransistor						
	2.1	Grund	lagen des SiGe-HBTs	5			
	2.2	Besch	reibung des ATMEL-SiGe1-Prozesses	9			
	2.3	Model	lieren der SiGe-Heterobipolartransistoren	11			
3	Konzentrierte passive Strukturen						
	3.1	1 Kapazitäten auf dem ATMEL-Prozess					
	3.2	Spuler	und Koppler	16			
		3.2.1	Spulen auf dem ATMEL-Prozess	17			
		3.2.2	Gekoppelte Spulen im ATMEL-Prozess	21			
		3.2.3	Spulen auf dielektrischen Schichten	25			
4	Verteilte passive Strukturen 22						
	4.1	Hochf	requenzleitungen	29			
		4.1.1	Koplanarleitungen	31			
		4.1.2	Mikrostreifenleitungen	34			
		4.1.3	Triplate-Leitungen	37			
	4.2	Anten	nen auf Waferebene	40			
		4.2.1	Patchantennen	41			
		4.2.2	Schlitzantennen	44			
		4.2.3	Schleifenantennen	47			

1

5	Oszillatoren					
	5.1	1 Einführung				
	5.2	Grundlagen des Oszillatorentwurfes				
	5.3	Entwurf	eines differentiellen Oszillators	53		
		5.3.1	Messungen und Simulationen des 24 GHz-Oszillators	57		
		5.3.2	24 GHz-Oszillator mit Puffer-Verstärker	60		
		5.3.3	Realisierter 32 GHz-Oszillator mit und ohne Puffer-Verstärker	62		
6	Inte	Integrationstechnologien				
	6.1	Zwische	mebenenisolatoren und Membranen auf Polymerbasis	66		
		6.1.1	Grundlagen und Eigenschaften von BCB	67		
		6.1.2	Bearbeitung von photosensitivem BCB	71		
	6.2	Silizium	lätzen	74		
	6.3	Integrati	onstechnologie für Schleifenantennen	78		
	6.4	Integrati	onstechnologie für Patchantennen	82		
	6.5	Übergang vom integrierten Schaltkreis zum Substrat				
	6.6	Bestimn	nung der abgestrahlten Leistung	86		
7	Aufbauten mit den Modulen mit BCB-Membrane					
	7.1	Stabilitä	t und Zuverlässigkeit der Membranen	89		
	7.2	Verkapse	elung der Module mit Membranen	90		
Ζı	ısamr	nenfassui	ng	93		
Aı	nhang	,		95		
	A.1	Korrektu	ır von Anschluss-Parasitäten	95		
	A.2	Die Para	ameter des MEXTRAM-Modells	98		
	A.3	Aufteilu	ng der MEXTRAM-Parameter bei der Extraktion	100		
	A.4	Gleichu	ngen des Kapazitätsmodells	101		
	A.5	Spulenb	ibliothek auf dem ATMEL-Prozess	102		
	A.6	Algorith	mus zum Charakterisieren der Leitungen	103		
	A.7	Reduzie	rung der Prozessschritte	105		
	A.8	Prozessf	luss der Schleifenantennen	106		
	A.9	Prozessf	luss der Patchantennen	109		

A.10 Versuchsaufbau zum Auslenken der Membranen	111					
A.11 Versuchsaufbau für die Temperaturzyklen	112					
A.12 Fernfeldmessungen an den Schleifenantennen	113					
A.13 Röntgendiffraktometriemessungen an BCB-Membranen	116					
A.14 Doppler Sensoren bei 24 GHz und 32 GHz	117					
Verwendete Formelzeichen	122					
Literaturverzeichnis						
Veröffentlichungen als Erstautor						
Veröffentlichungen als Koautor						
Danksagung	141					
Lebenslauf	142					