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2 Introduction

Insurance in Hybrid Markets

The determination of risk-adjusted, fair insurance premiums and the management of the
insurance company’s risk exposure are core challenges in actuarial science. The devel-
opments on the insurance markets show the importance of well elaborated models which
account for the economic environment of the insurance company. More explicitly, insurance
companies

e can sell parts of their insurance risk by issuing insurance linked products on the
financial markets, see Weber [95],

e can link the benefits of their insurance contracts to the performance of the assets
on the stock markets by offering unit-linked insurance products, see Moller [71] or
Vandaele and Vanmaele [93],

e have the possibility to invest in financial markets and hedge against their risks with
financial instruments.

Insurance markets should therefore be considered as part of one big hybrid market in which
appropriate pricing and risk-mitigation schemes are elaborated.

The present thesis introduces several frameworks in this context by applying no-arbitrage
pricing schemes and quadratic hedging approaches to a large class of insurance contracts.
All presented results are based on four research articles which have been submitted to
refereed journals. The articles Biagini and Widenmann [14] as well as Biagini, Groll,
and Widenmann [19] address the problem of flexibly modeling and pricing unemployment
insurance contracts while the articles Biagini and Widenmann [15] as well as Biagini,
Rheinldnder, and Widenmann |20] cover the issues of optimally hedging insurance contracts
in general settings.

A major novelty to the existing literature is to consider the underlying stochastic process,
describing the insured person’s progress in time of sojourning in the states, considered by
an insurance policy, as an IF-doubly stochastic Markov chain. This class of stochastic
processes was introduced in Jakubowski and Nieweglowski [61] and extends the classic
notion of Markov chains by including a reference filtration I, characterizing e.g. additional
market information. An important property of F-doubly stochastic Markov chains is that
they may admit matrix-valued stochastic intensity processes. This allows elaborating more
flexible models compared to the results of e.g. Moller [72] where a (classical) Markov chain
with a deterministic matrix-valued intensity function is considered. Well known examples
of F-doubly stochastic Markov chains are the reduced-form or hazard-rate models of credit
risk or life insurance, provided they admit the so called immersion property. Here, the
state space consists of only two states with the second state being absorbing such that
there can only occur one transition in time. There exists a vast literature on pricing and
hedging within this type of models, see e.g. Barbarin [6], Biagini and Cretarola [10, 11, 12],
Biagini and Schreiber [13], Biagini et al. [18, 17|, Bielecki and Rutkowski [24] or Bielecki
et al. [21, 22|, such that the consideration of (general) F-doubly stochastic Markov chains
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covers and extends most of these works to a multi-state framework. The advantage that
subsequent transitions can be considered facilitates the investigation of a larger class of
insurance contracts, e.g. general payment protection insurance (PPI) contracts with the
insured states “disabled”; “unemployed”, and “deceased”.

Pricing Unemployment Insurance Contracts

One of the investigated issues in this thesis is the modeling and calculation of fair insurance
premiums for unemployment insurance contracts. More precisely, we consider a particular
unemployment insurance product which pays a priori fixed, deterministic amounts to the
insured person as soon as he gets unemployed and fulfills several other claim criteria.
For example, one could think of PPI products against unemployment which are always
linked to some payment obligation of the insured person. If an insured event occurs,
the insurance company pays the (deterministic) installments during the respective period.
Given the random claim payments of this insurance contract, we apply no-arbitrage pricing,
in particular the benchmark approach with its real-world pricing formula, to determine
risk-adjusted insurance premiums. The use of this approach for insurance applications is
motivated as follows.

Pricing Insurance Contracts with the Benchmark Approach

Pricing of random claims has ever been one of the core subjects in both actuarial and
financial mathematics and there exist various approaches for calculating (fair) prices. The
actuarial way of pricing usually considers the classical premium calculation principles that
consist of net premium and safety loading: if C describes a random claim which the
insurance company has to pay (eventually) at time 7" > 0, then the premium 7(C') to be
charged for the claim is defined by

C C
=E|—|+A| — 1
(C) |:NT:| + <NT>7 (0.1)
——— N —
net premium safety loading

where NN is a discounting process, chosen according to actuarial judgement, see also Kull
[67]. Note that the net premium is the expected value of 1\% with respect to the real-world

(or objective) probability measure P. Possible safety loadings are A(J\%> = 0 (net premium

1\%) = a-E[NQT] (expected value principle, where a > 0), A(NQT) = a-Var(NQT)

principle), A(
(variance principle, where a > 0) or A(J\%) =a- /Var(l\%) (standard deviation principle,
where a > 0), see e.g. Rolski et al. [81|. The existence of a safety loading is justified by ruin
arguments and the risk-averseness of the insurance company: the net premium principle
with zero safety loading is unfavourable for the insurance company as the ruin probability

of an increasing collective tends towards 50% (central limit theorem).
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4 Introduction

Widely used pricing approaches in finance base on no-arbitrage assumptions, see e.g.
Black and Scholes [28] and Merton [70]. A financial market consisting of several primary
assets is assumed to be in an economic equilibrium in which riskless gains out of nothing
(arbitrage) by trading in the assets are impossible. A fundamental result in this context
is then the essential equivalence of absence of arbitrage and the existence of an equivalent
(local) martingale measure, i.e. a probability measure which is equivalent to the real-world
measure P and according to which all assets, discounted with some numéraire process,
are (local) martingales. There are different versions of this result which is often called
the fundamental theorem of asset pricing (FTAP), see. e.g. Delbaen and Schachermayer
[44], Delbaen and Schachermayer [45], F6llmer and Schied [53], Harrison and Pliska [57] or
Kabanov and Kramkov [63].

Based on the FTAP, it can then be shown that at any time ¢ € [0,7] an arbitrage-free
price m(C') of a (contingent) claim C' (paid at time 7' > 0) is given by

C

m(C) == S;Eq {§
T

i) 0

where Q is an equivalent (local) martingale measure, S* the discounting process and G =
(Gi)ier., the filtration which expresses the information on the market. Hence, the (new)
discounted price process is assumed to follow a (Q, G)-martingale.

Approaches which base on no-arbitrage assumptions are strong tools for the purpose
of modeling price structures because they provide access to the powerful theory of (local)
martingales. Other advantages are the dynamic description of price processes and the close
connection to hedging.

From an economic point of view both the safety loading in Equation (0.1) and the change
to an equivalent (local) martingale measure in Equation (0.2) express the risk-averseness
of the insurance company. Moreover, there exist several works which connect actuar-
ial premium principles with the financial no-arbitrage theory. The papers Delbaen and
Haezendonck [43] and Sondermann [89] both describe a competitive and liquid reinsur-
ance market in which insurance companies can “trade” their risks among each other. Since
riskless profits shall be excluded also in this setting, the no-arbitrage theory applies and
insurance premiums can be calculated by Equation (0.2). Both papers actually show that
under some assumptions! there exist risk-neutral® equivalent (local) martingale measures
which explain premiums of the form (0.1), so that these principles provide arbitrage-free
prices, too. Further papers, connecting actuarial and financial valuation principles are e.g.
Kull [67] and Schweizer [86]. Note that the possibility of trading insurance contracts rather
applies to the secondary market in which insurance companies trade risks through rein-
surance contracts or by securitization. In particular, Equation (0.2) provides reasonable
prices for the secondary market. In a competitive primary market these prices generally
constitute a good benchmark as well.

!The equivalent martingale measure is required here to be structure preserving, i.e. the claim process
remains a compound Poisson process under Q.

2For risk-neutral martingale measures, the numéraire process S* is chosen to be the bank account S° in
the domestic currency.
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Martingale approaches are therefore very suitable for actuarial applications and get even
more important for the evaluations in the aforementioned hybrid markets. Note that due
to their unsystematic part of the risk, most insurance contracts are not replicable by other
instruments on the hybrid market, which implies that the market is incomplete. As a con-
sequence, there usually exist several equivalent (local) martingale measures, corresponding
to the same numéraire, that guarantee the absence of arbitrage in the market. By Equation
(0.2) it is then clear that defining a premium calculation principle in the market is equiv-
alent to choosing a numéraire and an equivalent (local) martingale measure. The usual
procedure in this context is to fix some numéraire and then to search for an appropriate
measure. Examples, among others, are the minimal martingale measure and the minimal
entropy measure. However, several measure choices seem not to be economically reasonable
for hybrid markets. Moreover, it can be shown that for several insurance linked products
with random jumps, the density of the minimal martingale measure may become negative
and is therefore useless in the context of pricing.

To avoid these problems, we choose the benchmark approach for our pricing issue. This
approach fixes the real-world probability measure P and tries to determine the numéraire
process, more precisely a self-financing portfolio on the assets, called the IP-numéraire port-
folio, such that the discounted (or benchmarked) primary assets become local martingales
or, more generally, supermartingales. The existence and uniqueness of the P-numéraire
portfolio have been shown in sufficiently general settings, see Becherer [8] or Karatzas and
Kardaras [65]. The existence of the P-numéraire portfolio then guarantees the absence of
arbitrage, which is defined in a stronger way than usual. There could still exist some weak
form of arbitrage in the market, which would require negative portfolios of total wealth,
however. In a realistic market model, such portfolios should be impossible due to the law
of limited liability. A thorough description of the benchmark approach with its real-world
pricing formula and its advantages for pricing insurance contracts are given in Sections
1.1.1 and 1.2.

Application to Unemployment Insurance

Choosing the benchmark approach for pricing unemployment insurance contracts intrinsi-
cally provides a first risk-factor for the insurance premium: the P-numéraire portfolio. In
the first pricing approach which bases on the results in Biagini and Widenmann [14], we
assume the underlying F-doubly stochastic Markov chain characterizing the employment-
unemployment progress of an insured person in time to be time-homogeneous. A cor-
responding intensity is then still random but not varying over time. More precisely, we
consider an F-doubly stochastic Markov chain which is generated by a random matrix with
entries, derived from the value of the P-numéraire portfolio at maturity. In this setting
several conditional independence and distribution properties can be used to transform the
insurance premium into a conditional expectation with respect to the reference filtration I
of some closed analytic expression. The insurance premium can then be further evaluated
by specifying the reference filtration more precisely. In particular, we illustrate the evalu-
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6 Introduction

ations when the reference filtration is generated by the IP-numéraire portfolio, considered
to follow a Lévy process. Moreover, we show estimation and simulation results for the
case when IF is trivial, i.e. when the IF-doubly stochastic Markov chain is a (classical)
time-homogeneous Markov chain.

This first model provides interesting and reasonable results and incorporates the IP-
numéraire portfolio as a risk-process in an elegant way. In a second pricing approach
which is based on the results in Biagini, Groll, and Widenmann [19] we generalize this
framework in order to account for the aforementioned dependencies of the model in hybrid
markets. We drop the assumption on time-homogeneity but assume the underlying IF-
doubly stochastic Markov chain to be generated by intensity processes which are driven
by individual-related as well as micro- and macro-economic covariate processes. In this
framework it is generally not possible to obtain an analytic expression for the insurance
premium similar to the first framework. Instead, the insurance premiums are derived by
using Monte Carlo simulations.

In order to calibrate the price for the unemployment insurance products to real data,
we estimate the intensity processes using Cox’s proportional hazards model, see Andersen
et al. [2] and Cox [37, 38|. The data set is provided by the “Institut fiir Arbeitsmarkt-und
Berufsforschung” (IAB), the German institute for employment research, and contains a
sample of integrated labor market biographies, including the duration of employment and
unemployment periods between 1975-2008 of more than 1.5 million German individuals as
well as several useful socio-demographic covariates, such as age, nationality, educational
level, regional details, etc. In order to reflect additional dependencies of the intensity
processes to macro-economic factors, we also incorporate further covariates such as time
series for the MSCI-world returns and German unemployment rates.

An advantage of using Cox’s proportional hazards model is the availability of ade-
quate implementations, see for example the R-packages corresponding to Aalen et al. [1],
de Wreede et al. [42] or Jackson [60]. Technically, the implemented estimators estimate the
compensator processes of multivariate counting processes which count subsequent jumps
of the same kind of some unspecified multi-state switching process. The estimators in this
context are based on the martingale property of the compensated counting process. The
question is, if one can define characteristics for the underlying multi-state switching process
such that the corresponding compensator estimators also provide estimates for (parts of)
these characteristics. A well known example in this context is an underlying multi-state
switching process which follows a (classical) Markov chain with deterministic matrix-valued
intensity function. Here, the intensity characterizes the compensator of the corresponding
counting processes and vice versa such that the obtained estimators for the (deterministic)
compensator provide estimators for the intensity function as well, see Andersen et al. [2].
Yet, to the best of our knowledge, a more general relation for stochastic compensators,
particularly given by Cox’s proportional hazards model, has not yet been established in
the literature. Based on a martingale characterization in Jakubowski and Nieweglowski
[61], we bridge this gap and show that the class of F-doubly stochastic Markov chains is
the natural candidate to be considered as the underlying multi-state switching process.
This relation can analogously be applied to general multiplicative hazards models as given
in Andersen et al. [2].
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In order to test the obtained estimation results, we apply conventional goodness-of-
fit methods. The results generally show adequate performance of the estimated model
parameters. We furthermore introduce a non-standard method for testing the applicability
of the obtained parameters with respect to prediction by comparing actual and simulated
jump times for selected paths of the data set. The results here show good predictive power
which implies robustness of the Monte Carlo simulations to compute the premiums. A
conclusive sensitivity analysis of the insurance premiums also confirms these findings.

In general, both frameworks represent flexible premium determination tools for unem-
ployment insurance products since they incorporate risk factors. Moreover, they can be
easily adapted to model and estimate stochastic intensities and dependence structures in
many other different applications of financial and actuarial practice.

Quadratic Hedging of Insurance Contracts

The classic form of mitigating the risk exposure of an insurance company is to buy reinsur-
ance such that parts of the risks are taken over by another insurance company. Another
way is securitization. Here, parts of the risk are combined to a package of insurance linked
securities which are then sold on the financial markets, see Weber [95]. The investors in
these types of securities benefit from the low correlation between most types of insurance
contracts to the classical types of securities like stocks or bonds. This way the insurance
linked securities provide a good potential for diversification.

The third way of mitigating an insurance company’s risk exposure is to hedge parts of
the risk by appropriately trading in other assets. This particularly applies if the assets are
correlated to the insurance contract’s benefits or their (conditional) probability of occur-
rence. Practical examples in this direction are unit-linked life insurance products, where
benefits depend on the performance of the assets, or the aforementioned unemployment
insurance products, where the occurrence of the claim payment may depend to some ex-
tend on the performance of the stock markets. Moreover, there is an ongoing discussion
about the introduction of so called longevity bonds which would establish the possibility
for life insurance companies and pension funds to hedge parts of their longevity risk, see
e.g. Biagini and Schreiber [13] or Blake et al. [31]. Longevity bonds typically involve a
publicly accessible longevity index from which the mortality intensities for a wide range of
age cohorts can be derived.

As already mentioned, due to their unsystematic risk part the insurance claims in consid-
eration are not replicable by a self-financing trading strategy such that the hybrid market
is incomplete. A reasonable method for optimally choosing an investment strategy is then
important to cover at least parts of the risk. Well known and elaborated approaches in
this context are based on quadratic optimality criteria. In the present thesis we apply
mean-variance hedging and risk-minimization to a wide class of insurance contracts. For
an overview on these quadratic hedging approaches we refer to Pham [75] or Schweizer
[85].
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8 Introduction

To apply quadratic hedging for insurance contracts, we assume the discounted value pro-
cesses of the primary assets on the hybrid market, i.e. the hedging instruments, to be non-
negative (local) martingales. This provides that the mean-variance and risk-minimizing
hedging strategies are derived uniquely from the well known Galtchouk-Kunita-Watanabe
(GKW-) decomposition, see Ansel and Stricker [4] or Kunita and Watanabe |68].

Mean-Variance Hedging for Life Insurance Products

In a first scenario which is based on the results in Biagini, Rheinlédnder, and Widenmann [20)]
we apply mean-variance hedging to both well known and newly introduced life insurance
products by trading in longevity bonds. In particular, we consider pure endowments, i.e.
contracts which pay out one unit if the insured person is alive at maturity, and term
insurances, i.e. payments of one unit in case the insured person dies before the maturity
of the contract. Moreover, we consider general life annuities, paying out continuous rates
as long as the insured person is alive. In this context, we specify a new type of (insurance)
contract which we call a gratification annuity. This insurance contract would pay increasing
annuity rates, proportional to the conditional mortality probability of the insured person’s
own age cohort, inferred from the aforementioned longevity index. Broadly speaking, a
policyholder gets gratified if the insured person is healthier or belongs to a sicker age
cohort than was originally expected. The concept of a gratification annuity may also be
interesting because it allows diversifying unsystematic insurance risk while transferring
important parts of the systematic insurance risk to the policyholder, see also Norberg [74]
and Wadsworth et al. [94] in this context. Therefore, such type of insurance contract could
be interesting for the life insurance market.

The longevity bond as hedging instrument is modeled as an annuity, paying continuous
rate payments proportional to the conditional survival probability, again inferable from
a longevity index. There is an ongoing discussion in the literature, recommending the
introduction of longevity bonds on capital markets, see e.g. Blake et al. [32|. Their
appropriateness as hedging instrument for longevity risks has originally been proposed by
Blake and Burrows [29].

The combined position in one of the life insurance contracts and the longevity bond
also resembles various types of mortality swaps, see Dahl et al. [41] for a related concept,
where the floating leg (realized mortality) is exchanged versus a fixed leg (related to some
mortality projection). For a more detailed overview of the securitization of mortality risk
we refer to Barrieu and Albertini [7], as well as Blake et al. [30].

Given that the underlying life history of an insured person follows an F-doubly stochastic
Markov chain with the two states “dead” and “alive”, we implicitly work in the classical set-
ting of reduced form or hazard-rate models, see Bielecki and Rutkowski [24]. We therefore
use well known formulas which are specific for this two-state setting.

Under the assumption that the reference filtration I is generated by a one-dimensional
Brownian motion W, the mean-variance hedging strategies are first calculated for a sin-
gle life status and then generalized to hedging strategies for a whole portfolio of insured
persons following the work of Biffis and Millossovich [26]. We remark that the GKW-
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decompositions obtained for the mortality claims could also be derived from the results in
e.g. Barbarin [5] or Blanchet-Scalliet and Jeanblanc [33| for pure endowments, in Barbarin
[5] for term insurance and in Barbarin [5] or Biagini and Cretarola [12] for general annuities.
In our setting, however, we work under specific but still very general model assumptions
which allow computing the GKW-decompositions explicitly. The setting furthermore al-
lows illustrating the results for an affine specification of the mortality intensity process.
This assumption is very popular in the literature about modeling mortality intensities and
has been suggested for example in Biffis [25], Biffis and Millossovich [26], Dahl and Mgller
[40], Dahl et al. [41] or Schrager [83]. Here, we can relate the optimal hedging strategies
to the solutions of well known Riccati ordinary differential equations (ODEs) and analyse
the results with numerical simulations.

These simulations are carried out for two specifications of the mortality intensity, follow-
ing in the first case an Ornstein-Uhlenbeck process and in the second case a Feller process.
Both processes are considered to be non-mean-reverting, an assumption suggested by Lu-
ciano and Vigna [69] or Blake et al. [30]. In this context, we compare the optimal hedging
strategies and their residual hedging error for a gratification annuity and a simple life
annuity.

For further differences and advantages of the given framework to the ones existing in the
vast literature on quadratic hedging of financial insurance derivatives, like e.g. in Barbarin
[5], Dahl and Mgller [40], Dahl et al. [41], Mgller [71] or Mgller [72], the interested reader
is referred to Biagini, Rheinlénder, and Widenmann [20].

Risk-Minimization for General Insurance Contracts

With similar techniques and ideas to the first hedging framework we generalize the setting
and apply risk-minimization to a large class of insurance contracts, allowing also to model
several consecutive state transitions of the insured person. The results here can similar be
found in Biagini and Widenmann [15].

More specifically, we consider a general IF-doubly stochastic Markov chain which admits
an intensity, and propose general insurance contracts as being defined by three types of
insurance payments: state-dependent payments at maturity, state-dependent annuity-type
payments, and (transition-dependent) payments at the transition-time from one state to
another. This definition covers a large set of currently adopted insurance policies and is
motivated by the definitions of rating sensitive claims in Jakubowski and Niewegtowski
[62] or defaultable claims in Bielecki et al. [23]. It covers the aforementioned insurance
contracts of pure endowment, term insurance, general annuities and PPI as well as the
concepts of insurance contracts, given in Mgller [72| or Norberg |73].

Extending the results in Jakubowski and Nieweglowski [62] who applied F-doubly stochas-
tic Markov chains in the context of replicating rating-sensitive financial claims we obtain
the GKW-decomposition for the discounted value process of general insurance contracts
with respect to a square-integrable [F-martingale.

In order to elaborate risk-minimizing hedging strategies it is then necessary to specify
the underlying market. To this end, we assume that the reference filtration I is generated
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by an N-dimensional Brownian motion W and that the assets on the hybrid market are
F-adapted. In this setting the risk-minimizing hedging strategies are derived for general
insurance contracts with a deterministic payment structure with respect to the assets on
the market. Similar to the first framework on mean-variance hedging for life insurance
contracts, the results are then further specified within a general affine setting for the
intensity processes of the underlying [F-doubly stochastic Markov chain.

Guideline through the Thesis

Chapter 1

Chapter 1 introduces the basic notations, definitions and results which are used throughout
the thesis. In Section 1.1, the notations and definitions for hybrid markets are given based
on which the benchmark approach with its real-world pricing formula and the quadratic
hedging approaches are overviewed in Subsections 1.1.1 and 1.1.2. Section 1.2 highlights
the appropriateness of the benchmark approach and the quadratic hedging approaches for
actuarial applications and connects their general concepts and results with each other.

Chapter 2

Chapter 2 is devoted to the pricing of unemployment insurance products. In Section 2.1
the specific form of the unemployment insurance contracts in consideration is presented
based on which the corresponding insurance claim is specified. Using the real-world pricing
formula of the benchmark approach, first evaluations of fair insurance premiums are made.
In Section 2.2 a first framework for the insurance premiums within a time-homogeneous
setting of the underlying IF-doubly stochastic Markov chain is presented. The specific
results are then further illustrated within the Lévy process framework in Subsection 2.2.1
and within the classical Markov chain setting in Subsection 2.2.2. Section 2.3 provides the
second framework for evaluating the insurance premiums. Here, Cox’s proportional hazards
model is connected with the class of F-doubly stochastic Markov chains in Subsection 2.3.1.
Subsection 2.3.2 then briefly overviews the estimators which are then applied to the dataset,
described in Subsection 2.3.3. The estimation results are presented in Subsection 2.3.4 and
tested on their appropriateness through several goodness-of-fit methods in Subsection 2.3.5.
In Subsection 2.3.6, the estimates are used to evaluate the insurance premiums by Monte
Carlo simulations.

Chapter 3

Chapter 3 covers the mitigation of longevity risk by trading in a longevity bond. Here,
Section 3.1 establishes the specific modeling framework, used for deriving explicitly the
mean-variance hedging strategies. These are established for a single life status in Section
3.2 and for insurance portfolios in Section 3.3. The results are then further illustrated
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